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THE FILTERING PROBLEM FOR INFINITE DIMENSIONAL STOCHASTIC PROCESSES

G. Kallianpur
University of North Carolina, Chapel Hill
and
R.L. Karandikar
Indian Statistical Institute, New Delhi
Abstract
The paper presents some recently obtained results on the nonline-

ar filtering problem for infinite dimensional processes. The optimal
filter is obtained as the unique solution of certain measure valued
eguations. Robustness properties - both pathwise and statistical -
are given and a preliminary result shows consistency with the sto-

chastic calculus theory. Applications to random fields and models of

voltage potential in neurophysiology are briefly discussed.

1. Introduction

The finitely additive white noise approach to filtering, smoothing
and prediction developed in Kallianpur and Karandikar [3,4] is partic-
ularly useful when the stochastic processes involved take values in in-
finite dimensional spaces. Since there is no natural measure (such as
Lebesgue measure) in infinite dimensional spaces, the optimal filter
1s j3iven by a measure valued differential e ation in which the ob-
served process occurs as a parameter. The existence and unigueness of
solution has been established in [3] for the filtering problem to which
we confine ourselves in this paper. However, the result in [3] is not
aprlicuble to the most general observation model and, in particular,
does not cover linear filtering. We will first state a version of the
filtering result that is a significant improvement over the theorems

obtained in [3]} and then show how it can be applied to the case when

the system process is a Banach or Hilbert space valued Markov process,
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Eﬁi e.g., an Oornstein-Uhlenbeck process. Certain problems involving ran-

m.f dom fields (e.g. horizontal or vertical filtering) can also be solved

Eg; using the white noise formulation. We conclude by discussing the ro-

e

;;? bustness of the measure valued filter including a property which we

5 call statistical robustness (Theorem 3). Our final result (Theorem 4)

;31 extends some of our consistency results to the measure valued case.

;;- Corresponding resalts for prediction and smoothing problems will

appear in our forthcoming work [4].

S

jfj For notation and definitions not given in this paper, the reader
yay is referred to (3].

;:f 2. Measure-valued Equations for the Optimal Filter

;;ﬁ Let X =(Xt) be a Markov process defined on a complete probability
F space (%,A,7) and taking values in a Polish space S. Let K be a sepa-
S rable Hilbert space with inner product ( , ), and norm ! '”K and let
o 2 . 2 T2

""-" H := L ([OIT]IK) HES {3: [O,T] - K with !l@h = IH:’YSl[KdS < o},
{ 0

i; Let h : [0,T] S -K be a measurable function such that

"

e

::“:' T 2

- VP’V ) ! o

- é\.hs(xs(w))leS < {1)
.."n

- for every . - .

-.'P-

-,

:j Denote by (H,C,m) the finitely additive Gaussian white noise meas-
-

e ure and by e, the identity map from H to H. Let u ~7(u) be the A/B(H)-
fi measurable, H-valued process :t(w) =ht(Xt(w)), t - (0,T]. Both 7 and e
ff can be defined in an obvious manner on (E,f,1) = (2,A,T)®(H,C,m). Then
!:I-

> the abstract filtering model
8 y =i o+e 2
;; takes the more concrete form

- Yo T ht(xt) + e s 0 -t T, (3)
2{ In (3) (yt) is the observed process and (et) is K-valued white noise.
W
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Although our results also include the case of finite dimensional K, as

IE mentioned earlier, we are concerned in this paper with applications
N

“~

= where dimK ==,

-

‘ Letting Q¢ be the orthogonal projection on H with range

W H, := (s - H :fzﬁlﬂsﬂids =0} (0 <t -=T), it can be shown that the condi-
:& tional expectation Ea[g(xt)}Qty] exists in the finitely additive theo-
.-;:
‘-) . ry and is given by the Bayes formula
A
o, (g,Q.Y)

- t t

S(X)Y'o y] = — &
= e N A7 (4)

wh-re

E ~ t lt 2
o _ - =[I! 1°ds 1T (dw) -
7 Jt(g,Qty) {g(xt(u))e@{é(ys,hs(xs(w)))'(ds 2é’],hs(xs(w))[‘de,, (Gw) (5)
o It is assumed, of course, that g : S +IR 1is such that g(xt) is [-inte-
o

b arable.

o

S . . . . . .
Wy The main problem is to determine, recursively, the conditional dis-
N
ﬁ\ tribution F{(-) of Xt given Yoo 0 ts <t or, equivalently, the unnor-
(
[ malized conditional distribution F{(-), where
..F?.'
=~
- y ¥ (s v

F{(B) = and o,_(g,Q.y) = [g(x)T(dx).
t Y (5) t t s t

-7 ‘e
"..
jﬁ Let Y4 := M{S,B8(S) be the class of all finite Borel measures on S.
52 Before stating our result we need to impose the following conditions
et on X: Let D := D([0,»),S) be the Skorokhod space of functions from

[0,~) to S which are right continuous and have left limits and let

: Az = %, S u <t} where 0 - s <t <» and (xu) are the coordinate maps.

Dy (A) (1) The paths of the process X belong to ID;
(11) The Markov process xt admits a transition probability function

o Pleesee):

N (iii) For all (s,x) - [0,") -S, there exists a (countably additive)
.:\:

- wrobability measure Pooon (ID,A?)such that for all k 1,
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The extended generator of Xt will be denoted by L and its domain by 0.
More precisely, L is the generator of it 1= (t,Xt) with augmented state
space (0,~») S and stationary transition probabilities. Let (V:) be

the two parameter semigroup of (Xt) and (Tt), the one parameter semi-

Jroup of (Xt) with extended generator L and domain D. See [3].

Theorem 1. Let the S-valued Markov process xt satlisfy Condition (A)
and
T 2
[ !f" oo,
Eé hS(XS),de < (6)

For each n - H let c;(x) : [0,T}] S ~+IR be defined by

g - - Ly 12

cg(x) = (h_(x),n_), 2!;hs(x),_K. (7)
Denote by Vi the semigroup corresponding to the transition pro-
pabilities of X and also write NO 1= Hoxal. Then the following conclu-

sions hold for all y . H:

(a) T% 1s the unique solution of the integral equation
Y ¢ Y Y

- € . ~r. = . < . . .

fle, 0,7 <E£(0,°) N> + é (Lf +clf)(s,),T>ds, f£.0D (8)
b) T{ is the unique solution of the equation

7 0 ¢ Y (S Y

e - o= A e . 1"

307y Ved Ny o+ £<cs(vtq)( ), Tg>ds (9)

for all g9 - IB(S), the bounded, Borel measurable functions on S.

(c) Fé is the unique solution to

- “““T
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t
SE(t, ) F{> = <£(0,°) N> + [<(Lf +c¥f) (s,+) ,Fi>as

0 0
(10)
t
- [<c¥,r¥5<£,FY5ds, £ -0,
0 S S S
(d) F{ i1s the unique solution of the equation
Y 0 F Y (S Y F Y &Y s LY
<g,Fy> = <Vig,N > + £<cs(vtg),FS>ds - £<CS,FS><Vtg,FS>dS (11)

for all g < IB(S).
The uniqueness property asserted above is to be understood to hold
in the class of {Kt} =M satisfying the following conditions:

For A - B(S), KO(A) =E71A(X ) and t »Kt(A) is a bounded Borel

0

(12)
measurable function;
Ky is absolutely continuous with respect to Hoxgl and
th
l———=7i R, 0=t =T, (13)
d.’IoX,c

for a suitable constant R <=,

3. Examples

The theorems of the preceding section can be applied to certain
problems of filtering of random fields. Suppose that X =(XSX),
0<s:T, 0¢«x<b is a two parameter, real-valued, sample continuous
process. We shall refer to x as the spatial parameter. The observa-

tion model is

Y =

tx (14)

O T
O~ X

hS(st)dvds + th

where the following conditions are imposed:
(1) w:=(wtx) is a standard, Yeh-Wiener process.
(11) X and W are independent.
DL T/b, 2 2
(iii) m[ofo[hs(xsx)] dxds < =.

The assumptions on X allow us to regard Xt as a sample continuous pro-




cess taking values in the Banach space B := CO([O,b],HU. So we have

‘_; S=B and X ¢C([0,T];B). We shall make the further assumption that Xt
‘l

ALY

s¢}$ is a (B-valued) Markov process. Consider now the white noise model.

N

i J .

,f‘ Take K =H, the (reproducing kernel) Hilbert space of real valued abso-

o lutely continuous functions on [0,b] with square integrable derivatives.
s
Qi Let h : [0,T] xB ~H be given by
A',".' XA
‘ - L =
wa hy () (x) := [fh (n )dv, n <B.

~ 0
s
N
?@ Then the white noise observation model is given by
i l\l
-‘\'.
ek Yy = ht(Xt) + e 0 <t <T, {(15)
f&: where e is H-valued Gaussian white noise. For more details and a
';3 somewhat different treatment of this problem, see [7].

7
Py The conversion of the filtering problem involving a two parameter

.

:ﬂ random field into a filtering problem for an infinite dimensional (in
’ﬁij this case B-valued) signal process is useful in cases when observations
./‘\J
{ can be assumed to be available for all values of the spatial variable
fi Xx. The latter situation occurs when X, represents the (random) volt-
;iﬁ age potential at time t and "site" x of a spatially extended neuron,
ij the neuron being modeled as a thin cylinder or segment [0,b] (see
‘:if {5,6]). Another example in which neither parameter has the connotation
ig: of time occurs in problems of physical geodesy [1].

o An example of a B-valued Markov process Xt is the Malliavin Orn-

N . .

:ﬁl stein Uhlenbeck (0-U) process which is given by the unique solution of the
NN . 1 . .

O : = - = + - =
ko SDE thtx 2thdt dth, XOx B (XOx Gaussian) where B (th) is a
— Yeh~Cameron Wiener process. The generator L (the so-called Ornstein-
,ij Uhlenbeck operator) is well known: For 0 sxl,..., X <b and for func-
S tions f : B+~ IR of the form
o
o f(n) = f(n(xl),-.-, n(xn))

PR,

o p- 2 n
b where f - C_ (IR') we have

. b
ool
fﬁ"‘
®
O

-
-
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(Lf) (n) = 5 . §=l(xiAXj)§§;§§;(ﬂ(Xl)1---, U(Xn))
n -
1 of
-5 izln(xi)§§z(n(xl),.--, nix_)).

Other examples in which the infinite dimensional signal process Xt
does not arise from a multiparameter stochastic process also occurs in
the study of neuronal behavior when the geometrical shape of the neuron
is more complicated. Even in the simplest such models, Xt is an O-U
pProcess (more generally, a non-Gaussian, diffusion process) whose sample

paths lie in C([0,T],K) where K is some infinite dimensional Hilbert

space. A natural filtering problem is given by the linear model

= +
Ye = X &g

which follows from (3) by taking B =K and ht(n) =n.

4. Robustness of the Measure Valued Optimal Filter

We shall now state some typical results on the robustness proverties
of the measure valued optimal filter. These are extensicns of results
recently obtained by H.P. Hucke in his thesis [2]. Robustness is used
in two senses here: the first in the sense that has become convention-
al in the theory, viz., the continuous pathwise dependence of the opti-
mal filter on the observations; the second is robustness as commonly

used 1n statistics.

Write M := Hifgiihs(xs)ﬂids <,
Theorem 2. Let v,y' - H and denote the total variation norm
‘375_ ?{'Uvar - A§E$S)ET¥(A) -Ti'(A)}.
Then
i - Ti'HVar ©Me QY- Qty'H°expf%¥§QtyN2 + %Iioty'fz}-
Theorem 3. Let (Xk) (k=1,2, ) be signal processes satisfying assuamb-




WO tion (A) of Theorem 1. Suppose further that the following conditions

{Eﬁ are satisfied:
e
i§~ (2) h:[0,T] xs>K is continuous.
:k;‘ (b) The seguence of measures Ho(xk)_l converges weakly (=) to
R nex™! in (D, B(D)). |
Eﬁ; () ToX ((x:D: x, #x._1) = 0 for each t.
:j; Then for every v :=H, Ft’y = Fz in M{S) (in the topology of weak con-

vergence.)

o The statistical significance of the above result is clear. It says
that small changes in the distribution of the signal process cause only
e small deviations in the optimal filter. Further implications of stat-

}; istical robustness in specific problems (such as the Kalman filter with

non-Gaussian initial distribution) will be discussed in a later work.

- To what extent do the results of this paper imply analogous re-

sults for the stochastic calculus theory? Such consistency results

(“3 when signal and noise are finite dimensional have been presented in

S [3]. For the infinite dimensional case, results at this level of

:i jenerality do not seem to have been obtained in the conventional theory.
Nevertheless, using the white noise model of this paper one might hope

Ry to derive robust versions for the countably additive model

of at least some of our results. We conclude this topic by stating a

preliminary result of this kind.
_?ﬁ& Let (v,K,B) be an abstract Wiener space, Yy : KwB, X := CO([OJN,B)
fﬁ and ., the Wiener measure on (X,B(X)). Recalling that H==I?([O£N,K),
E% a representation space for (H,C,m) is given by (X,B(X),u). Denote by
;i wt, the coordinate map on X. Letting (5,1,3) = (G,A, e (X,B(X),u) and
i;: defining all processes involved on the product space 2 in the usual
™,
f{: manner we obtain a stochastic calculus model corresponding to (15)
':f' ¢
- 7, = év[hu(xu)ldu W (16)

- "' ..“.-‘ ‘>. .
Siget LT




AN Finally let f:, ?E be the conditional measures for the optimal filter
f} for (l6). Let é? stand for either one of thes=2. 3Jimilarly let "F be
"l
ft‘ either one of rY or F{.
AN t
LN
. . Theorem 4.
Lo . )
S (a) Let g cLl(Q,A,H) where g(w) =f(Xt(w)). Then, with Ru denoting
S
e
" the lifting map we have
by
v ¢ | . FY
g RIE (g]Q.v)] = Ef(g]F).
ﬂﬁi (b) Let f :S~>IR be bounded and continuous. Then
R [<f,87>] = <f£,857>
A
:ﬁj where <f,v> := [f(x)dv(x) for v e M(S).
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